翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Millikan oil drop experiment : ウィキペディア英語版
Oil drop experiment

The oil drop experiment was an experiment performed by Robert A. Millikan and Harvey Fletcher in 1909 to measure the elementary electric charge (the charge of the electron).
The experiment entailed observing tiny charged droplets of oil between two horizontal metal electrodes. First, with zero applied electric field, the terminal velocity of a droplet was measured. At terminal velocity, the drag force equals the gravitational force, and these depend on the radius in different ways, so that the radius of the droplet, and therefore the mass and gravitational force, could be determined (using the known density of the oil). Then an adjustable voltage was applied between the plates to induce an electric field, and the voltage was adjusted until the drops were suspended in mechanical equilibrium, indicating that the electrical force and the gravitational force were balanced. Now using the known electric field, Millikan and Fletcher could determine the charge on the oil droplet. By repeating the experiment for many droplets, they confirmed that the charges were all small integer multiples of a certain base value, which was found to be , within 1% of the currently accepted value of . They proposed that this was the (negative of the) charge of a single electron.
==Background==

Starting in 1908, while a professor at the University of Chicago, Millikan, with the significant input of Fletcher, and after improving his setup, published his seminal study in 1913. This remains controversial since papers found after Fletcher's death describe events in which Millikan coerced Fletcher into relinquishing authorship as a condition for receiving his PhD. In return, Millikan used his influence in support of Fletcher's career at Bell Labs.
Millikan and Fletcher's experiment involved measuring the force on oil droplets in a glass chamber sandwiched between two electrodes, one above and one below. With the electrical field calculated, he could measure the droplet's charge, the charge on a single electron being (). At the time of Millikan and Fletcher's oil drop experiments, the existence of subatomic particles was not universally accepted. Experimenting with cathode rays in 1897, J. J. Thomson had discovered negatively charged "corpuscles", as he called them, with a mass about 1840 times smaller than that of a hydrogen atom. Similar results had been found by George FitzGerald and Walter Kaufmann. Most of what was then known about electricity and magnetism, however, could be explained on the basis that charge is a continuous variable; in much the same way that many of the properties of light can be explained by treating it as a continuous wave rather than as a stream of photons.
The elementary charge ''e'' is one of the fundamental physical constants and its accurate value is of great importance. In 1923, Millikan won the Nobel Prize in physics, in part because of this experiment.
Aside from the measurement, the beauty of the oil drop experiment is that it is a simple, elegant hands-on demonstration that charge is actually quantized. Thomas Edison, who had previously thought of charge as a continuous variable, became convinced after working with Millikan and Fletcher's apparatus. This experiment has since been repeated by generations of physics students, although it is rather expensive and difficult to do properly.
In the last two decades, several computer-automated experiments have been conducted to search for isolated fractionally charged particles. So far (2007), no evidence for fractional charge particles was found after measuring over 100 million drops.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Oil drop experiment」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.